
Project: Pulse Litecoin
Platform: Pulse Chain & Ethereum Network
Language: Solidity
Date: October 14th, 2024

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 5

Claimed Smart Contract Features …………………………………………………………….. 6

Audit Summary ……………....…………………………………………………………………..8

Technical Quick Stats …..……………………………………………………………………… 9

Business Risk Analysis …..…………………………………………………………………… 10

Code Quality ……………………………………………………………………………………. 11

Documentation ………………………………………………………………………………….. 11

Use of Dependencies …………………………………………………………………………… 11

AS-IS overview ………………………………………………………………………………….. 12

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 28

● Solhint Linter …………………………………………………………………….……….. 30

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

`

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by Pulse Litecoin to perform the Security audit of the Pulse
Litecoin smart contract code. The audit has been performed using manual analysis as well
as using automated software tools. This report presents all the findings regarding the audit
performed on October 14th, 2024.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
● Pulse Litecoin Contracts handle multiple contracts, and all contracts have different

functions.

● Here's a brief overview of the key components and functionalities of the provided

code:

○ PulseBitcoin: The PulseLitecoin contract expands on the PulseBitcoin

mining concept by introducing an ERC20 token for the mineable asset

(pLTC). It allows users to leverage their ASIC tokens to mine pLTC and

implements a penalty-based system to encourage timely actions when

ending mining operations. The integration of ReentrancyGuard ensures that

operations remain secure and prevents abuse of the mining logic.

○ PulseBitcoinMineable: The PulseBitcoinMineable contract is designed to

be a flexible, abstract base for any contracts that wish to interact with the

PulseBitcoin mining system. It offers mechanisms to start and end mining,

manage penalties, and handle miner data efficiently. The use of abstract

contracts for Asic and PulseBitcoin ensures modularity, allowing the contract

to be extended and integrated into more complex systems like the

PulseLitecoin contract.

● There are 2 smart contracts files that were included in the audit scope.

● The contracts inherit the ERC20 and ReentrancyGuard standard smart contracts

from the OpenZeppelin library.

● These OpenZeppelin contracts are considered community-audited and time-tested

and hence are not part of the audit scope.

Audit scope

Name Code Review and Security Analysis Report for
Pulse Litecoin Smart Contract

Platform Pulse Chain & Ethereum Network / Solidity

File 1 PulseLitecoin.sol

File 1 MD5 hash 35B6373F1B2B8C2B958D02AB397ED042

File 2 PulseBitcoinMineable.sol

File 2 MD5 hash BB4FEE22A9570986C82C462775CA6EAF

Audit Date October 14th, 2024

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1: PulseLitecoin.sol
Tokenomics:

● Name: PulseLitecoin

● Symbol: pLTC

● Decimals: 12

● OpenZeppelin library used.

Key Points:

● This contract introduces a custom token (pLTC) and

interacts with external tokens like ASIC and pBTC as part

of its mining and reward mechanism.

● There are checks to prevent reentrancy attacks using the

nonReentrant modifier.

● The contract likely relies on the inherited

PulseBitcoinMineable for mining-related calculations.

Other Specification:
● Reentrancy Protection: Both minerStart and minerEnd

are marked as nonReentrant, preventing reentrancy

attacks.

● Penalties: The minerEnd function implements a penalty

for miners who go beyond a certain number of days

without ending their mining contract. This penalty halves

both the mined pLTC and the returned ASIC coins.

Ownership Control:
● There are no owner functions, which makes it 100%

decentralized.

YES, This is valid.

File 2: PulseBitcoinMineable.sol
● The PulseBitcoinMineable contract effectively integrates

mining functionality, handles miner data, and interacts

YES, This is valid.

seamlessly with the PulseBitcoin and Asic contracts.

● The setup allows miners to be easily started and ended

while keeping track of relevant mining data.

● However, careful attention should be paid to gas costs,

error handling, and security implications, especially when

working with external contracts and user funds.

Note: pBTC is the same as PLSB

Audit Summary
According to the standard audit assessment, Customer`s solidity-based smart contracts
are “secured”. These contracts do not contain any ownership control, hence they are
100% decentralized.

You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 1 high, 0 medium, 1 low, and 2 very low-level issues.
We confirm that 1 high and 1 low severity issues are fixed/acknowledged in the
revised smart contract code.

Investor Advice: A technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Moderated

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax 0%

Sell Tax 0%

Cannot Buy No

Cannot Sell No

Max Tax 0%

Modify Tax No

Fee Check Not Detected

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? No

Max Tax? No

Is it Anti-whale? Not Detected

Is Anti-bot? Not Detected

Is it a Blacklist? No

Blacklist Check No

Can Mint? No

Is it a Proxy Contract? No

Can Take Ownership? No

Creator Percentage? 0.00%

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contracts. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in Pulse Litecoin are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the Pulse Litecoin.

The Pulse Litecoin team has provided scenario and unit test scripts, which have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on in smart contracts. Ethereum’s NatSpec commenting

style is used, which is a good thing.

Documentation

We were given a Pulse Litecoin smart contract code in the form of a file. The hash of that

code is mentioned in the table above.

As mentioned above, the code parts are well-commented and the logic is straightforward.

So, it is easy to understand the programming flow and complex code logic quickly.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure are based on

well-known industry standard open-source projects.

Apart from libraries, its functions are used in external smart contract calls.

AS-IS overview

PulseBitcoin.sol : Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 decimals read Passed No Issue
3 minerStart external nonReentrant No Issue
4 minerEnd external nonReentrant No Issue
5 _minerStart internal Passed No Issue
6 _minerEnd internal Passed No Issue
7 _minerAt internal Passed No Issue
8 _minerLoad internal Passed No Issue
9 _minerAdd internal Passed No Issue
10 _minerRemove internal Passed No Issue
11 _minerIndexSearch internal Passed No Issue
12 minerCount external Passed No Issue
13 _miningDuration internal Passed No Issue
14 _miningDuration internal Passed No Issue
15 _daysForPenalty internal Passed No Issue
16 _lastMinerIndex internal Passed No Issue
17 _currentDay internal Passed No Issue
18 minerCount read Passed No Issue
19 minerStart write Passed No Issue
20 minerEnd write Passed No Issue
21 currentDay read Passed No Issue
22 approve write Passed No Issue
23 balanceOf read Passed No Issue
24 transfer write Passed No Issue
25 transferFrom write Passed No Issue
26 nonReentrant modifier Passed No Issue
27 _nonReentrantBefore write Passed No Issue
28 _nonReentrantAfter write Passed No Issue
29 _reentrancyGuardEntered internal Passed No Issue
30 name read Passed No Issue
31 symbol read Passed No Issue
32 decimals read Passed No Issue
33 totalSupply write Passed No Issue
34 balanceOf read Passed No Issue
35 transfer write Passed No Issue
36 allowance read Passed No Issue
37 approve write Passed No Issue
38 transferFrom write Passed No Issue
39 _transfer internal Passed No Issue
40 _update internal Passed No Issue
41 _mint internal Passed No Issue
42 _burn internal Passed No Issue

43 _approve internal Passed No Issue
44 _approve internal Passed No Issue
45 _spendAllowance internal Passed No Issue

PulseBitcoinMineable.sol : Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 _minerStart internal Passed No Issue
3 _minerEnd internal Passed No Issue
4 _minerAt internal Passed No Issue
5 _minerLoad internal Passed No Issue
6 _minerAdd internal Passed No Issue
7 _minerRemove internal Gas

Optimizations
Refer Audit
Findings

8 _minerIndexSearch internal Gas
Optimizations

Refer Audit
Findings

9 minerCount external Passed No Issue
10 _miningDuration internal Passed No Issue
11 _withdrawGracePeriod internal Passed No Issue
12 _daysForPenalty internal Passed No Issue
13 _lastMinerIndex internal Passed No Issue
14 _currentDay internal Passed No Issue
15 minerCount read Passed No Issue
16 minerStart write Passed Fixed

17 minerEnd write Anybody can
execute the
minerEnd

Refer Audit
Findings

18 currentDay read Passed Fixed
19 approve write Passed Fixed
20 balanceOf read Passed Fixed
21 transfer write Passed Fixed
22 transferFrom write Passed Fixed
23 approve write Passed No Issue
24 balanceOf read Passed No Issue
25 transfer write Passed No Issue
26 transferFrom write Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No critical severity vulnerabilities were found.

High Severity

(1) Anybody can execute the minerEnd: PulseBitcoinMineable.sol

There is no check for the caller and the miner for which the minerEnd function executes.

This allows the caller to get pLTC if the miner ends in a penalty period.

Resolution: We suggest correcting the logic. If this is part of the plan then please

disregard this issue.

Status: Acknowledged

Medium

No medium-severity vulnerabilities were found.

Low

(1) Parameter type is different: PulseBitcoinMineable.sol

The parameter types defined in the original contract and used in the PulseBitcoinMineable

contract are different.

Resolution: We suggest correcting the parameter type to avoid any failure of the function

in case of a large number.

Status: Fixed

Very Low / Informational / Best practices:

(1) Access Control: PulseBitcoinMineable.sol

No specific access control mechanisms (such as onlyOwner) are present in this contract.

However, since the primary functions are user-specific (i.e., each user manages their own

mining), this may not be required. If further administrative control is needed, consider

implementing owner-only functions for managing the contract.

(2) Gas Optimizations: PulseBitcoinMineable.sol

The use of loops in functions like _minerIndexSearch() and _minerRemove() could

potentially lead to high gas costs if there are a large number of miners. While this seems

mitigated by the practical usage limits (i.e., the number of miners a user might control), it is

still a concern to consider in gas-heavy environments.

Centralization Risk

The Pulse Litecoin smart contract does not have any ownership control, hence it is 100%
decentralized.

Therefore, there is no centralization risk.

Conclusion

We were given a contract code in the form of a file, and we have used all possible tests

based on given objects. We have observed 1 high, 1 low, and 2 Informational severity

issues. We confirm that 1 high and 1 low severity issues are fixed/acknowledged in the

revised smart contract code. So, the smart contract is ready for mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this, we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment, and functionality (performing the
intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no
statements or warranties on the security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bug-free status, or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - Pulse Litecoin

PulseBitcoin Diagram

PulseBitcoinMineable Diagram

Slither Results Log
Slither Log >> PulseLitecoin.sol

INFO:Detectors:
PulseLitecoin.minerEnd(int256,uint256,uint256,address) (PulseLitecoin.sol#791-817) ignores
return value by pBTC.transfer(minerOwner,miner.pSatoshisMined) (PulseLitecoin.sol#814)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-transfer
INFO:Detectors:
PulseBitcoinMineable.constructor() (PulseLitecoin.sol#550-556) ignores return value by
ASIC.approve(address(pBTC),type()(uint256).max) (PulseLitecoin.sol#555)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
INFO:Detectors:
Reentrancy in PulseLitecoin.minerEnd(int256,uint256,uint256,address)
(PulseLitecoin.sol#791-817):

External calls:
- miner = _minerEnd(minerIndex,minerOwnerIndex,minerId,minerOwner)

(PulseLitecoin.sol#793)
- pBTC.minerEnd(uint256(minerIndex),minerId,address(this)) (PulseLitecoin.sol#627)

State variables written after the call(s):
- _mint(minerOwner,pltcMined / 2) (PulseLitecoin.sol#803)

- _balances[from] = fromBalance - value (PulseLitecoin.sol#295)
- _balances[to] += value (PulseLitecoin.sol#307)

- _mint(msg.sender,pltcMined / 2) (PulseLitecoin.sol#804)
- _balances[from] = fromBalance - value (PulseLitecoin.sol#295)
- _balances[to] += value (PulseLitecoin.sol#307)

- _mint(minerOwner,pltcMined) (PulseLitecoin.sol#811)
- _balances[from] = fromBalance - value (PulseLitecoin.sol#295)
- _balances[to] += value (PulseLitecoin.sol#307)

- _mint(minerOwner,pltcMined / 2) (PulseLitecoin.sol#803)
- _totalSupply += value (PulseLitecoin.sol#287)
- _totalSupply -= value (PulseLitecoin.sol#302)

- _mint(msg.sender,pltcMined / 2) (PulseLitecoin.sol#804)
- _totalSupply += value (PulseLitecoin.sol#287)
- _totalSupply -= value (PulseLitecoin.sol#302)

- _mint(minerOwner,pltcMined) (PulseLitecoin.sol#811)
- _totalSupply += value (PulseLitecoin.sol#287)
- _totalSupply -= value (PulseLitecoin.sol#302)

Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Context._contextSuffixLength() (PulseLitecoin.sol#109-111) is never used and should be
removed
Context._msgData() (PulseLitecoin.sol#105-107) is never used and should be removed
ERC20._burn(address,uint256) (PulseLitecoin.sol#337-342) is never used and should be
removed

ReentrancyGuard._reentrancyGuardEntered() (PulseLitecoin.sol#469-471) is never used and
should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.20 (PulseLitecoin.sol#4) necessitates a version too recent to be trusted.
Consider deploying with 0.8.18.
solc-0.8.20 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Variable PulseBitcoinMineable.ASIC (PulseLitecoin.sol#528) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:PulseLitecoin.sol analyzed (12 contracts with 93 detectors), 14 result(s) found

Slither Log >> PulseBitcoinMineable.sol

INFO:Detectors:
PulseBitcoinMineable._currentDay() (PulseBitcoinMineable.sol#295-297) is never used and
should be removed
PulseBitcoinMineable._daysForPenalty() (PulseBitcoinMineable.sol#287-289) is never used and
should be removed
PulseBitcoinMineable._lastMinerIndex() (PulseBitcoinMineable.sol#291-293) is never used and
should be removed
PulseBitcoinMineable._minerAdd(PulseBitcoinMineable.MinerStore[],PulseBitcoinMineable.Miner
Cache) (PulseBitcoinMineable.sol#206-218) is never used and should be removed
PulseBitcoinMineable._minerAt(uint256) (PulseBitcoinMineable.sol#168-186) is never used and
should be removed
PulseBitcoinMineable._minerEnd(int256,uint256,uint256,address)
(PulseBitcoinMineable.sol#124-166) is never used and should be removed
PulseBitcoinMineable._minerIndexSearch(PulseBitcoinMineable.MinerCache)
(PulseBitcoinMineable.sol#254-273) is never used and should be removed
PulseBitcoinMineable._minerLoad(uint256,address) (PulseBitcoinMineable.sol#188-204) is
never used and should be removed
PulseBitcoinMineable._minerRemove(PulseBitcoinMineable.MinerStore[],PulseBitcoinMineable.M
inerCache) (PulseBitcoinMineable.sol#220-250) is never used and should be removed
PulseBitcoinMineable._minerStart(uint256) (PulseBitcoinMineable.sol#101-114) is never used
and should be removed
PulseBitcoinMineable._miningDuration() (PulseBitcoinMineable.sol#279-281) is never used and
should be removed
PulseBitcoinMineable._withdrawGracePeriod() (PulseBitcoinMineable.sol#283-285) is never
used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Pragma version^0.8.19 (PulseBitcoinMineable.sol#2) necessitates a version too recent to be

trusted. Consider deploying with 0.8.18.
solc-0.8.26 is not recommended for deployment
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Variable PulseBitcoinMineable.ASIC (PulseBitcoinMineable.sol#58) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Slither:PulseBitcoinMineable.sol analyzed (3 contracts with 93 detectors), 16 result(s)
found

Solidity Static Analysis
PulseLitecoin.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in PulseBitcoinMineable.(): Could
potentially lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this
static analysis.
Pos: 85:2:

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
PulseLitecoin.minerEnd(int256,uint256,uint256,address): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.
Pos: 41:2:

Gas costs:
Gas requirement of function PulseLitecoin.ASIC is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 58:2:

Gas costs:
Gas requirement of function PulseLitecoin.minerStart is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 30:2:

Gas costs:
Gas requirement of function PulseLitecoin.minerEnd is infinite: If the gas requirement of a function
is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or
actions that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 41:2:

Constant/View/Pure functions:
Asic.transferFrom(address,address,uint256) : Potentially should be constant/view/pure but is not.
Note: Modifiers are currently not considered by this static analysis.
Pos: 20:2:

Similar variable names:
PulseBitcoinMineable._minerEnd(int256,uint256,uint256,address) : Variables have very similar
names "miner" and "minerId". Note: Modifiers are currently not considered by this static analysis.
Pos: 137:4:

No return:
PulseBitcoin.minerCount(address): Defines a return type but never explicitly returns a value.

Pos: 45:2:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 57:32:

PulseBitcoinMineable.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in
PulseBitcoinMineable._minerIndexSearch(struct PulseBitcoinMineable.MinerCache): Could
potentially lead to re-entrancy vulnerability.
Pos: 258:2:

Constant/View/Pure functions:
PulseBitcoinMineable._minerAt(uint256) : Is constant but potentially should not be.
Pos: 172:2:

Constant/View/Pure functions:
PulseBitcoinMineable._minerAdd(struct PulseBitcoinMineable.MinerStore[],struct
PulseBitcoinMineable.MinerCache) : Potentially should be constant/view/pure but is not.
Pos: 210:2:

Similar variable names:
PulseBitcoinMineable._minerEnd(int256,uint256,uint256,address) : Variables have very similar
names "miner" and "minerId".
Pos: 140:24:

No return:
PulseBitcoin.minerCount(address): Defines a return type but never explicitly returns a value.
Pos: 45:2:

No return:
PulseBitcoin.transferFrom(address,address,uint256): Defines a return type but never explicitly
returns a value.
Pos: 53:2:

Solhint Linter

PulseLitecoin.sol

Compiler version ^0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
global import of path @openzeppelin/contracts/token/ERC20/ERC20.sol
is not allowed. Specify names to import individually or bind all
exports of the module into a name (import "path" as Name)
Pos: 1:13
global import of path
@openzeppelin/contracts/security/ReentrancyGuard.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:14
global import of path PulseBitcoinMineable.sol is not allowed.
Specify names to import individually or bind all exports of the
module into a name (import "path" as Name)
Pos: 1:16
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:21
Code contains empty blocks
Pos: 48:21

PulseBitcoinMineable.sol

Compiler version ^0.8.19 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:1
Variable name must be in mixedCase
Pos: 3:57
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 3:84

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

